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We consider the spatio-temporal evolution of patterns in the marginally unstable
Ekman layer driven by an applied shear stress. Both the normal and tangential com-
ponents of the Earth’s angular velocity are included in a tangent plane approximation
of the oceanic boundary layer at latitude λ. The fluid motion in a layer of finite depth
as well as one of infinite depth is considered. The linear instability in the infinite
depth case is known to depend on the direction of the applied stress for λ �= 90◦, but
this dependence is weak for the stress-driven Ekman layer. By contrast, the weakly
nonlinear motion exhibits for finite and infinite depths qualitatively different dynamics
for different stress directions.

The problem is treated by the method of multiple scales. In the case of finite
depth, this leads to the Davey–Hocking–Stewartson equation, an amplitude equation
of complex Ginzburg–Landau type coupled to a Poisson equation. In the case of
infinite depth, it leads to the anisotropic complex Ginzburg–Landau equation for the
amplitude of the roll motion. Motions in both finite and infinite depth basins are
explored by numerical simulation, and are shown to lead to chaotic dynamics for
the modulation envelope in most cases. The statistics and the nature of the patterns
produced in this motion are discussed.

1. Introduction
Ekman’s (1905) model is the prototype of the planetary boundary layer, and is a

basic feature of all motion in a rapidly rotating fluid system (see Greenspan 1968).
The Ekman spiral solution to the horizontally homogeneous Ekman layer problem
is an exact solution of the Navier–Stokes equations in a rotating frame of reference,
assuming a constant (eddy) viscosity. Ekman’s solution describes the relative motion
in a layer of fluid rotating at angular velocity ΩE |sin λ| and confined between two
planes normal to the axis of rotation. One of the planes may be removed to infinity,
in which case the resulting velocity profiles are of especially simple form. In the
geophysical applications contemplated by Ekman, the motion is interpreted as a local
one, with one of the boundaries being the tangent plane to the Earth at latitude λ.

Two idealized Ekman layer problems have natural geophysical interpretations, and
in both the layer is usually regarded as a half-space. In the first one, the fluid layer
above the tangent plane represents the atmosphere, and deviations from rigid-body
rotation are driven by horizontally homogeneous winds aloft, with a no-slip ground
plane. This atmospheric Ekman layer has received far more attention in the literature
than the second problem, in which the tangent plane represents the air–sea interface
and the fluid below represents the ocean. The deviation from rigid-body motion in
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this case is assumed driven by a horizontally homogeneous applied stress, imagined
to be applied by the wind. This problem provided the original impetus for Ekman’s
work.

Suitably normalized, both steady Ekman layer problems depend only on a Reynolds
number R = u0d0/νT , where d0 is the Ekman layer e-folding depth defined in (2.1),
u0 is the scaling speed appropriate to the problem considered, and νT is the eddy
viscosity. In the atmospheric case, the scaling speed is the geostrophic wind speed
aloft and for the oceanic case it is defined in (2.1).

The Ekman spiral solution is unstable when R exceeds a critical value. This was
apparently first noted by Stern (1960). The instability was subsequently explored
theoretically and numerically for cases with λ= 90◦ (Faller & Kaylor 1966a, b, 1967;
Barcilon 1965; Lilly 1966; Brown 1970; Iooss, Nielsen & True 1978; Melander
1983; Spooner & Criminale 1982; Spooner 1983) when the flow is barotropic and
in numerous other papers when the flow is stratified. This case is appropriate for
laboratory experiments (which come closest to representing the atmospheric model,
see Faller 1963; Faller & Kaylor 1966a; Tatro & Mollo-Christensen 1967; Caldwell
& Van Atta 1970; Caldwell, Van Atta & Helland 1972). In the laboratory there
is no horizontal component of the angular velocity of the experimental apparatus
(the traditional approximation), but in the geophysical application the horizontal
component cannot be neglected. This was first noted by Wippermann (1969), and
the effects of the horizontal component for λ = 45◦N on stability predictions were
further explored for both barotropic and stratified atmospheric models in Etling
(1971), Etling & Wippermann (1975) and Wippermann, Etling & Kirstein (1978). The
variation of the linear stability characteristics for all latitudes for both oceanic and
atmospheric barotropic models was considered by Leibovich & Lele (1985).

All linearized stability analyses reveal that the instability arises as a Hopf bi-
furcation. Iooss et al. (1978) also consider the post-bifurcation behaviour for the
unstratified, infinite-depth, Ekman layer in the traditional approximation. They
consider temporal development of the wave amplitude only, and compute a Landau
coefficient showing that the bifurcation is supercritical.

In this paper we look at the spatio-temporal evolution of the weakly nonlinear
oceanic Ekman layer model for the complete range of latitudes and for both finite and
infinite depths. When spatial modulation is allowed, the post-bifurcation disturbance
amplitude is governed by the Davey–Hocking–Stewartson equation system (Davey,
Hocking & Stewartson 1974) when the layer has finite depth, and this reduces
to a complex Ginzburg–Landau equation when the layer has infinite depth. Our
considerations of finite depth layers, which assume no-slip on the bottom plane,
require that we compute all linearized stability characteristics before proceeding to
the determination of the amplitude equations. The presence of a no-slip bottom in the
finite depth calculations is a stabilizing influence, as might be anticipated on heuristic
grounds. For example, the critical Reynolds number for λ = 90◦ increases from 11.82
for the infinite depth case to 31.25 for the case of depth approximately 3.16 × d0.

We find that the bifurcation is supercritical for both finite and infinite depths for all
considered latitudes. In contrast to most investigations of the pattern forming systems
that have employed the complex Ginzburg–Landau equation, the amplitude equations
governing the Ekman layer are anisotropic. The nonlinear evolution of patterns is
investigated by numerical simulation of the amplitude equations. As in a number
of other pattern formation systems, the pattern of rolls representing the motion at
bifurcation is perturbed by a collection of spiral and other defects that move through
the field, generating alterations of the local wavelength. Even for modest supercritical
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conditions, the motion can be chaotic depending on the direction of the applied
stress, apparently due to chaotic motion and interaction of defects. This qualitative
dependence of the dynamics on wind direction is particularly interesting.

We find that the instability of the Stokes wave solutions of the amplitude equations
is a useful guide to the appearance of chaotic dynamics. The statistical characteristics
of the chaotic motion, including the density of defects and spatial and temporal
correlations, are determined numerically.

The oceanic Ekman layer had not received the same level of attention as given
to the atmospheric Ekman layer, at least regarding the possible consequences of
instability. This may be due in part to the fact that laboratory experiments modelling
the atmospheric boundary layer are more easily done, and it does not appear that
attempts have been made to construct a stress-driven Ekman layer in the laboratory.
More importantly, the frequent appearance of cloud streets in the atmosphere led
to the suggestion that their formation may be due to Ekman layer instability. This
suggestion is supported by the resemblance of cloud rows to laboratory visualizations
of Ekman layer instability. Much of the work we have cited has addressed this issue.
Other evidence from large-eddy (Deardorff 1972; Mason & Thomson 1987) and direct
numerical simulations (Coleman, Ferziger & Spalart 1990) of turbulent Ekman layers
is counterindicative, showing no substantial tendency to form large-scale structures
in neutrally stratified fluid. Such structures are found in simulations with unstable
stratification, thus lending weight to the view that cloud streets are due to thermal
instability organized by wind shear.

The oceanic boundary layer also has a strong visual counterpart to cloud streets in
the form of elongated rolls or windrows known as Langmuir circulation. Ekman layer
instability also has been invoked as a possible cause for these features (Faller 1964).
This view has also now been discredited, and a mechanism that has mathematical
analogies to thermal instability but is mechanical in origin is now believed to be the
origin of the Langmuir circulation (see, for example, Leibovich 1983; Smith 1996).

Thus, in both the atmospheric and oceanic cases, the observed visible pattern seems
to be due to an instability that does not owe its existence directly to the properties
of the Coriolis acceleration, although the phenomena are embedded in the Ekman
layer and presumably influenced by this embedding. In fact, it was our intention of
exploring this interacting Ekman layer/Langmuir circulation instability that led us
to this study as a preliminary when it became clear that little was known about the
pattern formation characteristics of the weakly nonlinear Ekman layer. The results
have proven to be intrinsically interesting in the general context of pattern formation
in fluid systems.

2. Problem formulation
2.1. Navier–Stokes equations and basic state

We consider the motion of a layer of water on the Earth at latitude λ in the tangent
plane approximation. The layer has constant depth h, which is taken to be infinite in
parts of the analysis. The water density ρ is constant and the effects of small-scale
turbulence are parameterized by a constant eddy viscosity νT . The wind exerts a stress
on the water surface, which is in a direction θ north of east and has magnitude τ .
The coordinate system is chosen to rotate with the Earth, with x3-axis (unit vector
ê3) normal to the tangent plane and pointing upwards. The x1-axis is in the direction
of the surface stress and the x2-axis completes the right-handed Cartesian coordinate
system. The plane x3 = 0 coincides with the water surface.
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We consider non-zero latitudes and introduce non-dimensional variables with unit
length d0 and unit speed u0 given by

d0 =

(
νT

ΩE |sin λ|

)1/2

, u0 =
τ

ρ(2νT ΩE |sin λ|)1/2
, (2.1)

where ΩE is the magnitude of the Earth’s angular velocity. The incompressible
approximations of the momentum and continuity equations take the form

(∂t + u · ∇)u = −∇p − 2Ω × u +
1

R
�u, (2.2a)

∇ · u = 0, (2.2b)

where u is the velocity, p the modified pressure, and

Ω =
sign λ

R
(cot λ sin θ, cot λ cos θ, 1). (2.3)

The Reynolds number R = u0d0/νT is the control parameter. The boundary conditions
are zero vertical velocity and constant horizontal stress at x3 = 0, and no slip at
x3 = −h:

u3 = ∂3u1 − 21/2 = ∂3u2 = 0 at x3 = 0, (2.4a)

u = 0 at x3 = −h. (2.4b)

We discuss only northern latitudes (0◦ < λ� 90◦), since results for the southern
hemisphere can be found from this information via the following symmetry of
equations (2.2) and boundary conditions (2.4):

(λ, θ, x2, u2) → (−λ, −θ, −x2, −u2). (2.5)

Equations (2.2) with boundary conditions (2.4) have a simple solution that consti-
tutes a balance between the Coriolis force and the friction force. In complex notation
Ekman’s solution is

U1 + i U2 = exp

(
− iπ

4

)
sinh(1 + i)(x3 + h)

cosh(1 + i)h
. (2.6)

This solution is the basic state whose instability and subsequent nonlinear evolution
we investigate. In the limit h → ∞, it takes the form of a logarithmic spiral with
surface velocity at an angle of 45◦ to the right of the wind direction. At finite depths
the surface velocity is more nearly aligned with the wind, and for h → 0 the flow
tends to Couette flow aligned with the wind direction:

U1 + i U2 → exp(x3)
{
cos

(
x3 − 1

4
π
)

+ i sin
(
x3 − 1

4
π
)}

as h → ∞, (2.7a)

U1 + i U2 → 21/2 (x3 + h) as h → 0. (2.7b)

2.2. Perturbation equations

We decompose the velocity as u = U + v and the pressure as p = P + π, where
P is the pressure belonging to the basic state U given in (2.6). We have found it
convenient to use an augmented poloidal–toroidal representation for the solenoidal
vector field v. The poloidal–toroidal decomposition is a general representation for
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solenoidal vector fields that are spatially periodic in the unbounded directions in a
layer (Joseph 1976). This is assumed the case here at lowest order, but mean flows
can develop at higher order and the representation needs to be augmented. We have
done this by appending a vector field G to account for those parts of the velocity
vector that are not periodic. Thus the perturbation velocity is expanded as

v = ∇ × (∇ × χ ê3) + ∇ × ψ ê3 + G, (2.8)

where χ and ψ are scalar fields. The standard multiple-scale analysis described in
more detail in Appendix B, formally introduces slow and fast horizontal spatial scales.
This leads to potentials χ and ψ that are periodic in the fast horizontal variables,
and are modulated by an amplitude function varying on the slow scale. The vector
field G depends on horizontal coordinates only through slow variables. Equations for
χ and ψ are obtained by operating with ê3 · ∇ × ∇× and ê3 · ∇× on the momentum
equation. This results in the equations

(∂t + Uµ∂µ)��hχ = U ′′
µ∂µ�hχ − 2Ωj∂j�hψ +

1

R
�2�hχ

− ∂13(vj∂jv1) − ∂23(vj∂jv2) + �h(vj∂jv3), (2.9a)

(∂t + Uµ∂µ)�hψ = (U ′
1∂2 − U ′

2∂1)�hχ + 2Ωj∂j�hχ

+
1

R
��hψ − ∂2(vj∂jv1) + ∂1(vj∂jv2). (2.9b)

Here and subsequently, Latin indices run from 1 to 3, Greek indices run from
1 to 2, and repeated indices are summed over. The horizontal Laplacian operator
is denoted by �h and prime denotes the derivative with respect to x3. Equations
for G are obtained by averaging the momentum equation over the fast horizontal
variables. The averaging operator is represented by the symbol 〈 . . . 〉h. The horizontal
components of the resulting equation are

∂tG1 + G3U
′
1 = −〈∂1π〉h − 2Ω2G3 + 2Ω3G2 + R−1∂33G1 − ∂3〈v1v3〉h, (2.10a)

∂tG2 + G3U
′
2 = −〈∂2π〉h − 2Ω3G1 + 2Ω1G3 + R−1∂33G2 − ∂3〈v2v3〉h. (2.10b)

Boundary conditions for χ , ψ and G follow from the boundary conditions for v

(equations (2.4) without the inhomogeneous term) and the definition (2.8).

3. Linear instability
Suppose we fix the depth h, the latitude λ, and the wind stress direction θ . Then,

as the Reynolds number R passes the critical value Rc, the basic state becomes
unstable to infinitesimal periodic perturbations of wavenumber vector kc and angular
frequency ωc, and these critical parameters of the instability are functions of h,
λ and θ . Except for λ = 90◦, the Earth’s angular velocity has a horizontal component,
and that causes the dependence of the parameters on λ and θ . The critical Reynolds
number at each latitude has a minimum over wind direction θ , and this defines the
most dangerous wind direction for the initialization of instability. The linear instability
of the infinite depth case has been explored by Leibovich & Lele (1985), with most
attention paid to the direction of wind stress that is most favourable to instability.
Here we are interested in the effect of wind direction on the nature of the motions
that ensue at each latitude. We therefore recompute the linear stability characteristics
with this goal in mind. We are not aware of linearized stability computations for
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Figure 1. Critical parameters for the depth h = 0.1−1/2 and the latitudes
λ = 20◦ (solid), 40◦ (broken) and 70◦ (dotted).

finite depth cases, and so we calculate stability parameters for one choice of finite
depth.

Numerical values of the critical parameters for selected values of h, λ and θ are
given in Appendix A. Figures 1 and 2 show the critical parameters for the depth
h = 0.1−1/2 ≈ 3.16 and for infinite depth respectively. For h = 0.1−1/2 the parameters
are shown as functions of θ for λ = 20◦, 40◦ and 70◦. For infinite depth they are
shown for λ = 40◦ and 70◦. The dependence of the parameters on θ is stronger for
lower latitudes, because the horizontal component of the Earth’s angular velocity is
larger at lower latitudes. Furthermore, the finite depth is seen to have a stabilizing
effect on the Ekman layer, since Rc is increased substantially compared to the infinite
depth case. This is expected, since with decreasing depth the basic state approaches
the linear Couette flow profile, which is known to be linearly stable at all Reynolds
numbers. The value h = 0.1−1/2 is chosen to be small enough that the corresponding
basic state is still unstable.

In the case h = 0.1−1/2, the parameters kc and ωc are discontinuous for λ = 20◦

(at θ = 328◦) and λ = 40◦ (at θ = 317◦). This is because for these latitudes there are
two minima on the marginal stability surfaces for an interval of wind directions. One
of these minima passes the other at the indicated angle, i.e. at the discontinuity there
is a bifurcation point of codimension 2.

4. Amplitude equations
We use perturbation theory with expansion parameter ε = [(R − Rc)/Rc]

1/2 to
investigate the dynamics of the Ekman layer slightly above the instability threshold
and use the method of multiple scales to eliminate secular terms. At first order in
ε, equations (2.9) determine the critical parameters Rc, kc and ωc. At second order,
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Figure 2. Critical parameters for infinite depth and the latitudes
λ = 40◦ (broken) and 70◦ (dotted).

a solvability condition of (2.9) determines the group velocity cg in (4.1). At third
order, a solvability condition of (2.9) yields a differential equation for the complex
amplitude a of the unstable mode. Details of the definitions and calculations are
given in Appendix B. We do not explore the interaction of the two unstable modes at
points in parameter space where the bifurcation has codimension 2, and our weakly
nonlinear analysis is therefore incomplete at those points.

4.1. Finite depth

In the finite depth case, the amplitude equation is coupled to a Poisson equation for the
real pressure variable ps that drives a mean flow. That flow ensures that the boundary
condition of zero vertical velocity at the lower boundary is satisfied at third order. The
pressure equation is obtained by integrating the third-order continuity equation over
the vertical coordinate. The resulting equations are the Davey–Hocking–Stewartson
equations (Davey et al. 1974)

(∂t + cg · eµ∂µ) a =

{
cr

(
R

Rc

− 1

)
+ cµν∂µν + cµ∂µps − ca|a|2

}
a, (4.1a)

(∂11 + ∂22) ps = fµ∂µ|a|2, (4.1b)

where as before repeated Greek indices are summed from 1 to 2. The coefficients
fµ and the components of the group velocity vector cg are real constants and the
other coefficients are complex constants. Like the critical parameters, all coefficients
in (4.1) are functions of h, λ and θ , and must be computed. Numerical values of the
coefficients in equations (4.1) for the depth h = 0.1−1/2, and for selected values of λ
and θ are given in table 1 of Appendix A.
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Equations (4.1) are invariant under the transformation(
R

Rc

− 1, t, xµ, a

)
→

(
s

(
R

Rc

− 1

)
,

t

s
,

xµ

s1/2
, s1/2 a

)
, (4.2a)

ps → s1/2 ps, (4.2b)

for any real and positive parameter s. Hence one can find a solution of equations
(4.1) for a fixed value of R and use (4.2) to obtain solutions corresponding to other
values. This procedure does not yield solutions for the physical problem for all values
of R, however, because of the associated rescaling of the system size.

A complete reduction of equations (4.1) to an irreducible form is effected by a
Galilean transformation, a rescaling of time, distance and amplitude, and a shift in
frequency. This results in the equations

∂t a = {1 + (1 + ič11)∂11 + (ĉ12 + ič12)∂12 + (ĉ22 + ič22)∂22

+ (1 + ič1)∂1ps + (ĉ2 + ič2)∂2ps − (1 + iča)|a|2} a, (4.3a)

(∂11 + ∂22) ps = (f̂ 1∂1 + f̂ 2∂2)|a|2, (4.3b)

which contain the 11 real parameters ĉ11, č12, etc. We give this reduction to an
irreducible form only for completeness and will not use equations (4.3) hereafter.

4.2. Infinite depth

In the infinite depth case, no pressure variable is needed to ensure zero vertical
velocity at infinite depth. The evolution of the complex amplitude a is described by
the complex Ginzburg–Landau equation

(∂t + cg · eµ∂µ) a =

{
cr

(
R

Rc

− 1

)
+ cµν∂µν − ca|a|2

}
a, (4.4)

where again the components of the group velocity vector cg are real constants and
the other coefficients are complex constants. Numerical values of the coefficients in
equation (4.1) for selected values of λ and θ are shown in table 2 of Appendix A.
Again, transformation (4.2a) leaves (4.4) invariant. Furthermore, a Galilean trans-
formation and a general non-orthogonal coordinate transformation, plus a rescaling
of time and amplitude, and a shift in frequency, i.e.

(t, xµ, a) → (st t, Hµνxν − cg · eµt, saa exp(i sωst t)), (4.5)

transform (4.4) into the irreducible form

∂t a = {1 + (1 + i b1)∂11 + (1 + i b2)∂22 − (1 + i c)|a|2} a, (4.6)

which depends only on the three real parameters b1, b2 and c. These constants are
functions of λ and θ (the depth being infinite) and must again be computed. Samples
of the values of these coefficients are given in table 2.

5. Stokes wave solutions of the amplitude equations
5.1. Finite depth

Equations (4.1) describe patterns in the marginally unstable Ekman layer in the finite
depth case. They have simple nonlinear plane wave solutions of the form

a = F exp(i Q · x + i Ωt), (5.1a)

ps = 0, (5.1b)
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Figure 3. Growth rate of the most unstable perturbation of the homogeneous solution Q =
0 for h = 0.1−1/2, R = 2 × Rc and the latitudes λ = 20◦ (solid), 40◦ (broken) and 70◦ (dotted).

where the real constants F and Ω can be easily found in terms of the horizontal
wavenumber vector Q and the coefficients in the equations. All computations in this
section are for the choice R = 2 × Rc, where Rc is the critical Reynolds number
belonging to the values of h, λ and θ in question. We study the stability of these
‘Stokes wave solutions’ by substituting

a = (F + δa+ exp(i q · x + σ t) + δa− exp(−i q · x + σ ∗t)) exp(i Q · x + i Ωt) (5.2a)

ps = δps exp(i q · x + σ t) + c.c. (5.2b)

into (4.1) and linearizing in the perturbation constants δa+, δa− and δps . The solution
is stable if the growth rate Re(σ ) of perturbations for any wavenumber vector q, is zero
or negative. In figure 3 we show the growth rate of the most unstable perturbation of
the homogeneous solution Q = 0 as a function of θ for h = 0.1−1/2 and the latitudes
λ = 20◦, 40◦ and 70◦. At all three latitudes, there is an interval of wind directions for
which the growth rate is positive, implying that the homogeneous solution is unstable
in that interval. For λ = 20◦, 40◦ and 70◦, this interval is [114◦, 231◦], [156◦, 317◦]
and [196◦, 264◦], respectively. We therefore expect that the dynamics of the unstable
Ekman layer in a finite depth layer depends on the wind direction, the dynamics
being more irregular in the interval of instability.

5.2. Infinite depth

In the infinite depth case, equation (4.4) is the amplitude equation describing pattern
formation in the marginally unstable Ekman layer. As described above, this equation
can be transformed into the irreducible form (4.6). Equation (4.4) and equation (4.6)
have nonlinear Stokes wave solutions of the form (5.1b). Here we will provide results
in terms of the amplitude equation in the irreducible form (4.6).

Figure 4 shows the coefficients in (4.6) as functions of θ for λ = 40◦ and λ = 70◦

(the depth being infinite). Instead of b1 and b1, we show the ‘Benjamin–Feir numbers’
(1 + b1c) and (1 + b2c). If both Benjamin–Feir numbers are positive, there are Stokes
wave solutions of equation (4.6) that are stable with respect to long-wavelength
modulations. If one or both of the Benjamin–Feir numbers are negative, there are no
stable Stokes wave solutions (Benjamin & Feir 1967; Weber, Bodenschatz & Kramer
1991). We see that for λ = 70◦, there are no wind directions for which stable Stokes
wave solutions exist. For λ = 40◦ on the other hand, stable Stokes wave solutions
exist for wind directions in the interval [210◦, 276◦]. As in the finite depth case, we
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Figure 4. Coefficients in the amplitude equation in irreducible form (4.6) for the two latitudes
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Figure 5. Simulations of the amplitude and mean drift equations (4.1) (for finite depth) and of
the amplitude equation (4.4) (for infinite depth) are performed with coefficients corresponding
to the values of h, λ and θ shown here. The radial coordinate gives 90◦ − λ in degrees and the
azimuthal coordinate gives θ in degrees. Crosses stand for h = 0.1−1/2 and circles stand for
infinite depth.

expect the dynamics of the unstable Ekman layer in infinite depth layers to depend
on the wind direction, the dynamics being more regular in the interval of stability.

6. Simulations of the amplitude equations
We perform numerical simulations of the amplitude and mean drift equations (4.1)

and of the amplitude equation (4.4) to investigate the dynamics of the marginally
unstable Ekman layer in finite and infinite depth layers respectively. Details of the
initial conditions and duration of the simulations is given in Appendix C.

The simulations are done in the frame moving at group velocity cg . The simulations
are performed with coefficients corresponding to the values of h, λ and θ shown in
figure 5, and usually with R = 2 × Rc, where Rc is the critical Reynolds number
belonging to the values of h, λ and θ in question. Solutions corresponding to other
values of R can be obtained from these simulations via transformation (4.2), which
also changes the scales of length, time and amplitude. In figure 5, crosses correspond
to the finite depth h = 0.1−1/2 and circles correspond to infinite depth.

Most simulations exhibit defects, i.e. points at which the magnitude of the complex
amplitude a vanishes. At the location of a defect a phase contour along which the real
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part of a vanishes crosses one along which the imaginary part vanishes. The phase
of a changes by ±2π as a defect is circled in an anti-clockwise direction. Depending
on the sign of the phase change, the defect is said to have positive or negative ‘charge’.
Defects of opposite charge are created and annihilated pairwise and typically move
through the box, disorganizing the field (Coullet, Gil & Lega 1989). In terms of phase
contours, a defect pair is created when a loop of a Re(a) = 0 phase contour crosses
an Im(a) = 0 contour. In order to characterize the simulated states, we calculate
time series of defect numbers and defect speed statistics. Furthermore, we calculate
temporal and spatial phase correlation functions as defined by Shraiman et al. (1992):

C(x1, x2, t) =
1

T L1L2

∫ T

0

dt ′
∫ L1

0

dx ′
1

∫ L2

0

dx ′
2

× exp(φ(x ′
1, x

′
2, t

′) − φ(x ′
1 + x1, x

′
2 + x2, t

′ + t)). (6.1)

As noted above, most simulations are for Reynolds number R = 2 × Rc, with the
understanding that the solutions for all other values of R, in particular those closer to
threshold, can be found from these results via the symmetry transformation (4.2). As
previously explained, however, the transformation does not produce all solutions for
all values of R – there is a size effect. We therefore perform some simulations for values
of R different from 2 × Rc. In particular, for coefficients corresponding to h = 0.1−1/2,
λ = 40◦ and θ = 138◦, we perform calculations for R/Rc = 1.01, 1.1, 1.2, 1.3, 1.5 and
2 in a box of size 316 × 316 units of length. We observe a transition from regular to
chaotic behaviour as R is increased. For R = 1.01 × Rc, the simulation tends to the
homogeneous Stokes wave solution, which is of course characterized by perfect spatial
correlations across the whole box and perfect temporal correlations over arbitrarily
long times. For R/Rc = 1.1 and 1.2 we observe that the simulations tend to a state
which consists of four and eight spiral defects, respectively, that move very slowly.
These states are characterized by exponentially decaying spatial correlations, and
Gaussian temporal correlations. A comparison of the correlation times, correlation
lengths and amplitudes of the results of the simulations for R/Rc = 1.3, 1.5 and 2
indicates that they are indeed related to each other by the transformation (4.2)

6.1. Finite depth

All finite depth simulations with R = 2 × Rc yield chaotic solutions with defects
present. The following description of results focuses on two cases: simulations with
coefficients corresponding to h = 0.1−1/2, λ = 40◦, θ = 180◦ and R = 2 × Rc are
referred to as ‘case I’, and simulations with coefficients corresponding to h = 0.1−1/2,
λ = 40◦, θ = 138◦ and R = 2×Rc are referred to as ‘case II’. Figure 6 shows snapshots
of simulations of case I and case II. The two top figures give the results for case I
and those at the bottom for case II. The left figures show lines of constant phase of
the amplitude a. The right figures show the corresponding states of a physical field.
Positive values are shown in black and negative values in white.

In case II some defects appear as pronounced spirals. These are long-lived structures
as can be seen from figure 7, which shows defect tracks, indicating defects of positive
(negative) charge by plus- (minus-) signs. The tracks are shown in the frame moving
with the group velocity cg relative to the original frame. The initial state is that shown
in figure 6 and the defects are shown at 50 evenly spaced instances spanning a total
time interval of 3520 time units. Comparing figures 6 and 7, one can see that some
spiral defects are nearly stationary and maintain their identity over the time interval
for which the defect tracks are plotted. Since the spirals are shown in the moving
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Figure 6. Snapshot of a case I simulation (top figures) and of a case II simulation (bottom
figures). Lines of constant phase of the amplitude a are shown on the left; the real (imaginary)
part of a vanishes along solid (broken) lines. The corresponding state of a physical field is
shown on the right; black regions correspond to positive values of the field and white regions
to negative values. Note that the area shown for case II is four times that shown for case I.
The surface stress is in the x1-direction.
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Figure 7. Defect tracks for case II, showing defects of positive charge as plus-signs and defects
of negative charge as minus-signs. The defects are tracked for a time interval of 3520 time
units, starting from the state shown in figure 6.

frame, this means that they travel effectively with velocity cg in the original frame
of reference. Furthermore, all spirals have negative charge, which is presumably a
consequence of the broken chiral symmetry due to the rotation of the coordinate
system. Indeed, the sign of the charge is reversed under the symmetry transformation
(2.5), so that in the solution for the southern hemisphere, generated from case II
via (2.5), all spirals have positive charge (as has previously been mentioned earlier
in this section). Pronounced spirals are also present in simulations with coefficients
corresponding to h = 0.1−1/2, λ = 40◦, θ = 320◦, and h = 0.1−1/2, λ = 90◦. Note that
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Figure 8. Time series of the defect number in a box of size 316 × 316 for case II.
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Figure 9. Distributions of defect speeds for case II. The distributions for defects with positive
(negative) charge are shown as plus-signs (minus-signs) and are not normalized. The broken
line is an exponential fit and has e-folding speed 0.05.

the total charge for a periodic system vanishes, so positive charges in the northern
hemisphere do not appear as spirals, but merely as intersections of contours of real
and imaginary parts of a.

In all finite depth simulations, the defect number varies erratically with time.
Figure 8 shows the time series of defect numbers for case II in a box of size 316×316.
Time series of simulations with other coefficients have a similar form. The average
defect density depends strongly on the coefficients in equations (4.1). It is highest in
case I with on average about 0.007 defects per unit area, and is on average about 9
times lower in case II.

We calculate the distributions of defect speeds for several simulations and find
them to be roughly exponential. Figure 9 shows the speed distributions of defects with
positive charge (plus-signs) and negative charge (minus-signs) for case II. In order to
generate these distributions, we calculate the average absolute speed of a defect over
the course of its life and then weight that speed by the lifetime of the defect.
The distributions are not normalized. Also shown is an exponential fit to these
distributions; the e-folding speed for this fit is about 0.05.

Finally, we calculate spatial and temporal phase correlation functions. In all
finite depth calculations, both correlations decay roughly exponentially, although
with very different time and length scales. The temporal phase correlation functions
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Figure 10. Temporal phase correlation function for case I (a) and case II (b).
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Figure 11. Snapshot of a case III simulation. Lines of constant phase of the amplitude
a are shown in (a); the real (imaginary) part of a vanishes along solid (broken) lines.
The corresponding state of a physical field is shown in (b); black regions correspond to
positive values of the field and white regions to negative values. The surface stress is in the
x1-direction.

for cases I and II are shown in figure 10. Note the different time scales in the two
plots.

6.2. Infinite depth

Here we focus on results for simulations with coefficients corresponding to λ = 40◦,
θ = 81◦ and R = 2 × Rc (case III) and λ = 40◦, θ = 231◦ and R = 2 × Rc (case IV).
Figure 11 shows a snapshot of a case III simulation. Figure 11(a) shows lines of
constant phase of the amplitude a and figure 11(b) shows the corresponding state
of a physical field. Positive values of that field are shown in black and negative
values in white. The simulation of case IV converges to the homogeneous solution
Q = 0 described in the previous section, and is the only simulation corresponding to
R = 2 × Rc that is not chaotic. The amplitude a in this case is constant across the
box at any time and the physical fields are perfectly sinusoidal.

7. Discussion and conclusion
The stability of Stokes wave solutions provides some guidance for the actual

evolution of the amplitude. For example, the defect density is highest and the temporal
phase correlation function has shortest time scale in the simulations of case I,
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for which the homogeneous Stokes wave solution is most unstable (see figure 3).
Further, the simulations of case IV, for which the corresponding Benjamin–Feir
numbers are both positive, tend to the regular homogeneous Stokes wave solution.
However, we also observe chaotic solutions when Stokes waves are stable, e.g. in
case II the homogeneous solution is stable (see figure 3) but case II simulations are
chaotic. A referee has pointed out that similar behaviour has been observed for the
isotropic complex Ginsburg–Landau equation and has been attributed to the Eckhaus
instability of the spiral waves.

The results we obtained for the temporal phase correlations, the defect speed
statistics and the defect densities, are consistent with the notion that the motion of
the defects causes the decay in the temporal phase correlations (Coullet et al. 1989).
This follows from the observation that the average defect distance, as determined from
the defect densities, divided by the e-folding decay time of the phase correlations is
roughly equal to a typical defect speed in cases I, II and III.

The wind stress τ determines not only the velocity scale u0, but also the eddy vis-
cosity νT , and therefore the length scale d0. For moderate wind speeds of 10−15 m s−1,
reasonable estimates of these quantities are u0 ≈ 0.05 m s−1, νT ≈ 0.015 m2 s−1 and
d0 ≈ 15 m. This leads to R ≈ 50, which is of the same order as Rc in Figures 1 and 2.
The results of this paper therefore have relevance for the oceanic Ekman layer
under realizable environmental conditions. Our finite depth calculations, for which
h = 0.1−1/2, correspond in this scenario to a layer depth of about 47 m. With |kc| ≈ 0.6,
and ωc ≈ 0.2 (see figure 1), the rolls have then a wavelength of (2π/|kc|) d0 ≈ 160 m
and a phase speed of (ωc/|kc|)u0 ≈ 0.03m s−1. They travel at that phase speed towards
smaller values of x2.

We close by pointing out several caveats that have to be borne in mind. First, we
have taken a simplified view of the small-scale turbulence by parameterizing it with
a constant eddy viscosity. Second, we performed a secondary stability analysis of the
rolls in the Ekman layer (not published), and found that secondary instabilities set in
at Reynolds numbers less than 1% above the linear instability threshold. Nevertheless,
simulations with coefficients in the stable regime may produce chaotic results.
Lastly, and most importantly for application to the ocean, the effect of surface
waves – always present under wind forcing – is neglected. These lead to Langmuir
circulation, as discussed in the introduction, which are expected to dominate. We have
explored the inclusion of Langmuir effects, and shall present the results in another
paper.
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Appendix A. Coefficients in the amplitude equations
Table 1 shows the critical parameters Rc, kc and ωc, and the coefficients in the

amplitude and mean drift equations (4.1) for the depth h = 0.1−1/2 and the indicated
values of the latitude λ and the wind direction θ .

Table 2 shows the critical parameters Rc, kc and ωc, and the coefficients in the
amplitude equation (4.4) for infinite depth and the indicated values of λ and θ . Also
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(λ, θ ) (90◦, −) (40◦, 138◦) (40◦, 180◦)

Rc 31.25 28.08 18.79
kc (0.36, 0.46) (0.36, 0.51) (0.53, 0.45)
ωc 0.20 0.22 0.16
cg (0.24, − 0.54) (0.22, − 0.51) (0.18, − 0.49)
cr 0.03 + 0.07 i 0.03 + 0.08 i 0.04 + 0.05 i
c11 0.26 − 0.10 i 0.26 − 0.13 i 0.28 − 0.16 i
c12 −0.12 + 0.03 i −0.12 + 0.05 i −0.11 + 0.15 i
c21 −0.12 + 0.03 i −0.12 + 0.05 i −0.11 + 0.15 i
c22 0.21 + 0.05 i 0.21 + 0.03 i 0.11 − 0.12 i
c1 0.06 − 6.85 i 0.15 − 6.91 i 0.14 − 4.04 i
c2 −0.07 + 6.13 i −0.07 + 5.71 i −0.19 + 5.53 i
ca 0.27 + 0.26 i 0.34 + 0.32 i 0.34 + 0.52 i
f1 0.03 0.03 0.08
f2 −0.03 −0.03 −0.04

Table 1. Parameter values for depth h = 0.1−1/2 and selected values of λ and θ .

(λ, θ ) (90◦, −) (40◦, 81◦) (40◦, 231◦)

Rc 11.82 15.49 13.04
kc (0.25, 0.20) (0.15, 0.19) (0.23, 0.38)
ωc 0.18 0.19 0.26
cg (0.27, − 0.36) (0.09, − 0.29) (0.22, − 0.29)
cr 0.04 − 0.04 i 0.03 − 0.03 i 0.06 − 0.03 i
c11 0.37 − 0.13 i 1.08 − 0.58 i 0.63 + 0.02 i
c12 −0.27 + 0.04 i −0.72 + 0.95 i −0.47 + 0.17 i
c21 −0.27 + 0.04 i −0.72 + 0.95 i −0.47 + 0.17 i
c22 0.44 − 0.13 i 0.70 − 1.31 i 0.42 − 0.32 i
ca 0.04 + 0.07 i 0.02 + 0.04 i 0.12 + 0.07 i
b1 −0.70 −2.15 −1.51
b2 −0.25 0.25 0.51
c 1.90 1.79 0.55
st 5.24 6.13 13.75
H11 13.59 4.74 24.56
H12 11.36 13.87 43.29
H21 −4.27 −12.81 −32.05
H22 6.54 −9.71 −24.33
sa 0.93 0.89 0.52
sω −0.90 −1.32 −0.48

Table 2. Parameter values for infinite depth and selected values of λ and θ .

shown are the parameters b1, b2 and c in the amplitude equation in irreducible form
(4.6) and the transformation parameters in (4.5).

Appendix B. Derivation of the amplitude equations
In the perturbation analysis the variables are expanded as follows:

∂µ → ∂µ + ε∂Xµ
, ∂t → ∂t + ε∂T1

+ ε2∂T2
, (B 1a)

χ = εχ (1) + ε2χ (2), ψ = εψ (1) + ε2ψ (2), (B 1b)

Gµ = ε2G(2)
µ , G3 = ε3G

(3)
3 , (B 1c)
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where T1, T2 and Xµ are ‘slow variables’. The first-order function χ (1) is assumed to
have the form

χ (1) = A(T1, T2, Xµ) χ̂ (1)(x3) exp(i kc · x + i ωct) + c.c., (B 2)

and similarly for ψ (1). The normalization of χ̂ (1) and ψ̂ (1) is chosen so that

∫ 0

−h

∣∣v̂(1)
1

∣∣2 +
∣∣v̂(1)

2

∣∣2 +
∣∣v̂(1)

3

∣∣2 dx3 = 1, (B 3)

where according to the representation (2.8) v̂
(1)
1 = i (kc · ê1)∂3χ̂

(1) + i(kc · ê2)ψ̂
(1), etc.

Substitution of the expansions (B 1) and (B 2) into equations (2.9) and (2.10) yields
linear inhomogeneous equations at every order in the expansion parameter ε =
[(R − Rc)/Rc]

1/2. The critical parameters Rc, kc and ωc are chosen such that the
linear operator in (2.9) is singular. That operator reappears at every order in ε

and therefore solvability conditions need to be applied to the inhomogeneous terms.
These conditions yield a differential equation for the amplitude A. In the finite depth
case that equation is coupled to a Poisson equation for a pressure variable. The
derivation of the amplitude equation is standard (Newell & Whitehead 1969; Cross
& Hohenberg 1993), and we only give details of the part of the analysis that pertains
to the pressure variable.

B.1. Finite depth

The pressure is expanded as

π = ε
(
π(1) + πs

)
+ ε2π(2), (B 4)

where πs only depends on slow variables. The second-order mean momentum
equations (2.10) are

0 = −∂X1
πs + 2Ω3G

(2)
2 + R−1∂33G

(2)
1

− |A|2
{
i|kc|2∂3

(
χ (1)∗∂3χ

(1) ê1 + χ (1)∗ψ (1) ê2

)
· kc +c.c.

}
, (B 5a)

0 = −∂X2
πs − 2Ω3G

(2)
1 + R−1∂33G

(2)
2

− |A|2
{
i|kc|2∂3

(
χ (1)∗∂3χ

(1) ê2 − χ (1)∗ψ (1) ê1

)
· kc + c.c.

}
. (B 5b)

The solution of (B 5) can be written as

G(2)
µ = Ĝ(2)

µ (x3) |A|2 + ĝ(2)
µν(x3) ∂Xν

πs, (B 6)

where the functions Ĝ(2)
µ and ĝ(2)

µν are easily computed numerically. The term in

(B 6) proportional to |A|2 contributes to the cubic term in the amplitude equation
in the usual way, whereas the term proportional to ∂Xν

πs establishes the coupling
between the amplitude and the pressure equations. The latter equation is obtained by
substitution of (B 6) into the third-order continuity equation

∂3G
(3)
3 = −∂Xµ

G(2)
µ , (B 7)

and integration of (B 7) from x3 = −h to x3 = 0 using the boundary conditions
G

(3)
3 (x3 = −h) = G

(3)
3 (x3 = 0) = 0. Using the variables a = εA and ps = επs casts the

amplitude and pressure equations into the form (4.1). If the pressure variable πs were
not introduced into the analysis, the boundary condition G

(3)
3 (x3 = −h) = 0 could not

be enforced.
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B.2. Infinite depth

No slowly varying pressure variable is introduced and the pressure is expanded like
the variables χ and ψ in (B 1). The analysis proceeds as in the previous section
with πs = 0. We introduce a slow vertical variable X3 = x3/h and consider the limit
h → ∞. G

(3)
3 is written as

G
(3)
3 = G

(3)(f )
3 (x3) + G

(3)(s)
3 (X3). (B 8)

The function G
(3)(f )
3 is determined by (B 7) and

G
(3)(s)
3 (X3 = −1) = −∂Xµ

|A|2
∫ 0

−h

Ĝ(2)
µ (x3) dx3. (B 9)

Appendix C. Numerical methods and checks
In the computations of the critical parameters and of the coefficients in the amp-

litude equations, we use the spectral collocation method with Chebyshev polynomials
to discretize the computations in the vertical coordinate (Canuto et al. 1988). The
critical parameters are checked with numerous published results, e.g. Iooss et al.
(1978), Cox et al. (1992), and Leibovich & Lele (1985). We check the computations
leading to coefficients cr and ca in the amplitude equations (4.1) by comparing the
values we obtain for these coefficients in the case of Langmuir circulations (not
reported here), with those reported by Cox et al. (1992). Furthermore, we check the
functions χ̂ (1) and ψ̂ (1), multiplied by the homogeneous Stokes wave solution, with
results for these functions from a fully nonlinear computation of the convection roll
state close to threshold. Finally, we found the stability analysis of the Stokes wave
solutions to be consistent with the stability analysis of the fully nonlinear solutions.
Unfortunately, a check with the weakly nonlinear analysis reported by Iooss et al.
(1978) is not entirely successful; for the quantity (ζ10/γr )

1/2 in that paper we obtain
the value 1.38, whereas the reported value is 0.90. In the light of the fact that all
other checks are successful, we contend that our results are accurate.

For the simulations we use a spectral code with 126 Fourier modes in each direction.
We use periodic boundary conditions and random initial conditions. We assign to
the value of the amplitude a at every grid point a random number from the interval
[−F, F ], where F is the magnitude of the uniform Stokes wave solution. Typical
simulations are those of case II, for which we use a square box of size 316 × 316, a
constant time step of 0.7 time units and run the code for 140 000 time steps.
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